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Abstract— To mitigate the congestion caused by parking,
performance based pricing schemes have received a significant
amount of attention. However, several recent studies suggest
location, time of day, and awareness of policies are the primary
factors that drive parking decisions. In light of this, we provide
an extensive study of the spatio-temporal characteristics of
parking demand. This work advances the understanding of
where and when to set pricing policies, as well as how to target
information and incentives to drivers looking to park. Harness-
ing data provided by the Seattle Department of Transportation,
we develop a Gaussian mixture model based technique to
identify zones with similar spatial demand as quantified by
spatial autocorrelation. In support of this technique we provide
a method based on the repeatability of our Gaussian mixture
model to show demand for parking is consistent through time.

I. INTRODUCTION

Developing effective parking policy is challenging con-
sidering the diverse needs of a city which must be balanced.
Perhaps the most significant consequence of failing to do so
adequately is increased congestion on arterials. Indeed, it has
been estimated that approximately 30% of traffic in a city is
due to vehicles in search of parking [1], [2]. The economic
and environmental impacts of this phenomenon have been
shown to be significant [3]-[5].

While performance based pricing strategies aimed at com-
bating adverse impacts of parking are widely researched
[6]-[9] and explored by cities [10]-[13], there is growing
evidence that several factors beyond price drive parking de-
cisions. The results of surveys conducted in Los Angeles and
Beijing on drivers looking to park revealed that proximity to
an intended destination influenced decisions more than price
[14], [15]. Correspondingly, the results of empirical studies
on the price elasticity of parking demand support considering
control methods beyond price. One of the most expansive
studies examined the SFpark Project [10] and found that
price elasticities varied significantly with location and time of
day, indicating price was not the only factor in decisions [7].

The complexity of many proposed pricing schemes is
also problematic. For instance, it took two price adjustments
and increased marketing before drivers were aware enough
of policies to change their behavior in the SFPark Project
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[7]. Likewise, the aforementioned survey in Los Angeles
confirmed drivers awareness to price is low [14].

Despite new data sources that could potentially support
nuanced management strategies, cities generally employ
simple static pricing schemes, predominantly owing to the
obstacles to carrying out substantial policy changes. While
maintaining salient features of the existing policies which
make them viable, e.g., being easy to track and understand,
the approach to selecting where and when to set them can
be greatly improved by exploiting available data streams.
Thus in contrast to prior research, we analyze frequently
overlooked factors in parking decisions such as location and
time of day, to propose methods that can improve traditional
policies with straightforward modifications.

Leveraging publicly available data sources, we develop
approaches to identify zones and time periods with similar
spatial and temporal parking demand respectively—allowing
for more effective simple static pricing schemes. Specifically,
we show that a Gaussian mixture model (GMM) can be
used to identify groups of block-faces which have a high
degree of spatial autocorrelation. We supplement the model
by providing a method based on the repeatability of the
GMM to metricize the consistency of parking demand, and
demonstrate through experiments that demand is indeed
consistent through time.

In Section II we introduce our data sources, describe our
method to estimate demand, and discuss the spatio-temporal
characteristics of parking demand. We describe our approach
using a GMM to identify zones with similar spatial demand
and how we quantify this using spatial autocorrelation in
Sections III and IV, respectively. In Section V, we present
the results of our analysis using parking data from Seattle,
WA and conclude with a discussion in Section VI.

II. SPATIO-TEMPORAL CHARACTERISTICS OF DEMAND
A. Data Sources

We use paid parking transaction data, block-face supply
data, and GPS location data of the block-faces from January
154, 2017-July 30", 2017 made available to us via the Seat-
tle Department of Transportation (SDOT)!. The paid park-
ing transaction data includes both pay-station and pay-by-
phone records for each block-face. Paid parking is available
Monday—Saturday. The block-face supply data consists of
the estimated number of parking spaces for each block-face?.

IThese data sources are available via the open data portal at
data.seattle.gov.

%In Seattle, parking spaces are not marked and thus the number of spaces
for each block-face is estimated by dividing the length of the legal parking
zone into 25 foot increments.



The GPS location data of the block-faces includes the latitude
and longitude of both ends of a block-face. We use the
endpoints to get the coordinates of the midpoints of block-
faces.

B. Demand via Estimated Occupancy

With expanding use of smart parking meters, the most
widely applicable method to estimate occupancy is through
paid transaction data. In this method, the estimated occu-
pancy at block-face ¢ at time £ is given by

Active Transactions; |k
Occupancy, [k] = Supply ] 4]

We estimate the occupancies at each minute and aggregate
them to an hour granularity since prices do not change at
any higher frequency than this.

The estimated occupancy deviates from the true occupancy
because select vehicles are permitted to park for free, vehi-
cles leave before the paid time is up, and the estimated supply
of a block-face may be inaccurate due to spaces not being
marked. These factors can cause the estimated occupancy to
be greater than 100%, and we clip the maximum estimated
occupancy at 150%. The estimated occupancy eclipses this
limit less than 0.45% of the hourly occupancy instances over
all block-faces. Because our analysis focuses on the relative
relationship between occupancies, using the estimated occu-
pancy has a negligible affect on our analysis.

C. Testbed

We focus our analysis on the Belltown neighborhood
in Seattle. This neighborhood is of particular interest by
nature of it being a rapidly growing mixed use development.
Moreover, Belltown has both the highest population density
[16] and the most complete coverage of on street parking of
any neighborhood in Seattle.
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Fig. 3. Paid parking divisions in Belltown. Parking in the north zone (red)
is $1.00/hr in 8AM-11AM and $1.50/hr in 11AM-8PM with four hour
time limits. In the south zone (blue) parking is $2.50/hr in SAM-5PM and
5PM-8PM with two and three hour time limits respectively.

D. Spatial and Temporal Characteristics

Evaluating the occupancy profiles of Belltown in Fig. 1,
we find Monday-Friday see comparable demand, while Sat-
urday follows a different trend. During weekdays, occupancy
increases from the opening of paid parking until demand
peaks near lunch time, before decreasing during the after-
noon until increasing again during the evening hours near

dinner time. In contrast to weekdays, on Saturday the demand
for parking nearly continuously increases throughout the day.
These observations highlight that a reasonable parking policy
may use unique weekday and weekend pricing schemes, and
policies must consider the temporal characteristics of demand
that may be driven by businesses.

We use Fig. 2 as a motivating example of the spatial
demand characteristics we observe. In Fig. 2a, the occupancy
at 7PM on Friday is more or less uniformly distributed
throughout Belltown, with the exception of an area of much
higher occupancy in the center of the neighborhood. This
area happens to have a high concentration of bars and
restaurants which we conjecture drive demand. Interestingly,
the area of high occupancy also appears to be up against the
divide of the north and south paid parking zones—denoted by
red and blue block-faces respectively in Fig. 3—which have
a $1.00/hr price difference at this time. One could conjecture
that a superior division of paid parking zones exists which
could reduce the congestion in this area.

In Fig. 2b, the occupancy at 10AM on Saturday has a more
diverse distribution, but most importantly the areas of high
occupancy are located in very different locations. The source
of the high occupancy areas is immediately clear, as the
top and bottom of the neighborhood are the closest parking
to some of the most famous weekend tourist attractions in
Seattle. Just above the top of the neighborhood is the Space
Needle, and just below the bottom of the neighborhood
is Pike Place Market. This example highlights one of the
key problems we seek to address in this paper: parking
policies with uniform pricing schemes in arbitrary zones and
time periods ignore important spatio-temporal characteristics
which reduces their effectiveness.

III. GAUSSIAN MIXTURE MODEL

We use a GMM as a clustering method to find zones and
groups of block-faces within them that are spatially close
and have similar demand. This technique enables us to:

1) Draw new inferences about parking demand and its
spatio-temporal characteristics.

2) Use data to make informed decisions about zones and
time periods in which static, uniform pricing schemes
would be more effective than if chosen arbitrarily.

3) Consider identified zones as groups of users with
similar preferences, facilitating targeted information
and incentives.

A. Model Description

The GMM is a probabilistic method to model a distribution
of data with a mixture of multivariate Gaussian distributions,
each with a mean vector p; and covariance matrix ;.
The probability distribution of the GMM with k£ mixture
components is given by

k
plalm, 1, B) =Y miN (s, 55). (2)
j=1
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Fig. 2. Contours of the mean occupancies in Belltown. Each scatter point is the midpoint of a block-face.

We consider each sample of our dataset to be a vector
x; € R3, containing spatial and demand features for a block-
face as

Ty = [xi,latitude L5 longitude xi,oceupancy] . 3)

Thus the complete dataset is given by the matrix of the n
samples stacked as z = [z, Tn] T In our implemen-
tation we normalize features column-wise to be in [0, 1]. The
motivations for the features we choose is their simplicity—
they exactly capture the spatial demand aspects of the data
we have—and they work to tradeoff grouping block-faces
which are close and block-faces which have similar demand.

We consider a vector of n indicator variables z =
[zl zn] as the latent component labels for samples.
The prior on the probability of a sample belonging to a
mixture component can then be expressed as

p(zi = j) = 7j. €]

The parameter 7 must satisfy the restrictions 7; € [0, 1] and
Zle m; = 1. The likelihood of a sample belonging to a
mixture component is given by

p(xilzi = j) = N(@ilp;, X5), (5)

where the multivariate Gaussian distribution is
exp [—5(zi — py) TS5 (@i — )]
(2m)3 (%2 '
We make the common assumption that the features are
conditionally independent given the component, i.e. each

covariance matrix X; is diagonal.
The objective function of the GMM is the log likelihood

N(@i|p;,%5) = (©)

of the data given by
n k
LL 2 log p(z|m,pu, 2) = ZIOgZWjN(xi|Mja2j)~ (N
i=1 j=1

We employ the expectation-maximization (EM) algorithm
[17] to optimize for this objective. The EM algorithm, given
in Algorithm 1, consists of an initialization of the unknown
parameters and two steps, the E step and the M step, which
are repeated until convergence. The convergence criteria we
use is to terminate the algorithm when the change in the log
likelihood between iterations, which is ensured to be positive
since the log likelihood is guaranteed to increase at each
iteration of the EM algorithm [18], [19], is smaller than a
parameter e.

ALL2LL —LL ! <e (8)

In the E step, the expected values of the unobserved compo-
nent labels given the current parameter values are updated.
These are the posterior probabilities and are sometimes
referred to as the responsibility that component j takes for
data point ¢ [20]. Formally, we will denote this term as

74,5 éP(Zi = jlas, mj, 1, X5). 9)

In the M step, the parameter values are updated to maximize
the log likelihood.

Once the convergence criteria is met, we make hard
assignments of each sample x; to the component label j
which maximizes the responsibility r; ;j—that is,

z; = argmax 7; ;. (10)

J

The objective function is non-convex, which only guaran-
tees that we find local minima. Hence, we run the algorithm



Algorithm 1 EM Algorithm for GMM
> x: normalized feature matrix

1: procedure EM(x)

2: for each initialization do
3: while ALL > ¢ do
4: for each sample x; do
5: E-Step:
6: for j in {1,...,k} do
7:
o TNl %)
= =k

> mp N (@il 250)
8: end for
9: end for
10: for each component 7, 115, do
11: M-Step:
12:

1 n
= Zri,j
=1
13:
= D i1 Tl

DY LY

14: n T
_ i (i — )" (@ — )i
X = =
Dlim1 T

15: end for
16: end while
17: Store maximized LL for the initialization
18: Store sample assignments using (10)
19: end for

20: end procedure

for several random initializations and retain the model from
the iteration that resulted in the highest log likelihood.

The GMM also involves a model selection problem of
selecting the number of mixture components. We leverage
the Bayesian Information Criterion (BIC) [21] to solve this
problem. In particular, we select the number of components
which minimizes the BIC.

B. Consistency Metric

We aim to quantify how similar demand is from week to
week at a given day of week and time of day, i.e. we want
to determine the consistency of demand. Pricing schemes,
as well as targeted information and incentive campaigns,
can be constructed more effectively knowing that demand
characteristics will remain the same without changes to
policy or the system.

We propose a method to metricize the consistency of
demand based on the repeatability of our GMM approach.
Using our dataset, the procedure to determine the consistency
metric value at a day of the week and hour of the day is as
follows:

1) For the chosen day of the week and hour of the
day, select a specific date and fit a GMM using the
occupancy data at this instance.

2) Assign component labels to each block-face for all
other instances with the same day of the week and
hour of the day in the dataset using the learned model.

3) Determine the percentage of block-faces which were
assigned to the same component as they were in the
original GMM fit.

4) Repeat (1)—(3) switching the date on which the GMM
is fit, and then average over the percentages computed
at each iteration.

We explore this method and discuss the results in Section V.

IV. SPATIAL AUTOCORRELATION

We use a standard measure of spatial autocorrelation—
Moran’s I [22]—to quantify the degree of spatial homo-
geneity or heterogeneity present in the demand. Moran’s [
is defined as
. N 2o Zj wi;(0; — 0)(0; — 0)

D02 Wi >_i(0i —0)? ’
where for our problem N denotes the number of block-faces,
o; denotes the occupancy for block-face ¢, 0 denotes the
mean occupancy over all block-faces, and W = (wi,j)f\fj:l
is a matrix of spatial weights with zeros along the diagonal.

Values of I range from —1 (indicating perfect dispersion)
to 1 (indicating perfect clustering of similar values). The [
value can be used to find a z—score and then a p—value
to determine whether the null hypothesis, that the data is
randomly disbursed, can be rejected.

There are several ways the spatial weight matrix W can be
designed depending on the objective. We explore three such
methods to evaluate certain questions of interest in Section V.
In particular, we will evaluate each method by determining
whether the p-values are significant using a two-sided p-value
with a significance measure of .01. We report the percentage
of instances in our data set—each instance given by the
occupancy at a date and time—that are significant.

1

Y

A. Assessing Local Homogeneity

In Section II we discussed and demonstrated that parking
demand displays spatial heterogeneity. A logical follow up
question to this observation is whether there is at least local
spatial homogeneity. If this were the case, it would imply
that it could be possible to find groups of block-faces where
there is spatial homogeneity. To evaluate this objective we
create the weight matrix by setting values of w;; to 1 if
block-face j is one of the k nearest neighbors to block-face
¢ and 0 if it is not. We experiment using a range of values
for k£ in Section V.

B. Assessing Homogeneity in Current Parking Zones

We are also interested in the spatial autocorrelation within
the currently designated paid parking zones by the city
of Seattle. This will help us appraise current policies and
provide a means to make comparisons with our method
of selecting paid parking zones. To measure the spatial
autocorrelation within the current zones we create the weight
matrix by setting values of w;; to 1 if block-faces i and j
are in the same parking zone and 0 if they are not.



(a) Friday 7PM

(b) Saturday 10AM
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Fig. 4. GMMs fit using mean occupancies in Belltown at Friday 7PM in Fig. 4a and Saturday 10AM in Fig. 4b. Block-faces are colored by the component
label, the ellipses indicate the first standard deviations of the components GPS coordinates, and the red scatter points indicate the centers of the components
GPS coordinates. Fig. 4c shows clusters of the spatial centers of the components from GMM fits in Belltown on all Wednesdays in our dataset at 10AM.

TABLE I
CONSISTENCY METRIC RESULTS OVER ALL PAID DAYS OF THE WEEK AND HOURS OF THE DAY. UNITS ARE IN PERCENTAGE.

| Day\ Time [ 8AM [ 9AM | 10AM [ I1AM | 12PM [ IPM | 2PM | 3PM | 4PM | 5PM | 6PM | 7PM || Daily Consistency
Monday 67.7 | 781 | 835 | 879 | 909 | 845 | 845 | 82.1 | 82.6 | 833 | 787 | 79.5 81.9
Tuesday 69.3 | 860 | 90.7 | 927 | 91.6 | 90.0 | 89.7 | 87.4 | 83.1 | 85.4 | 85.8 | 85.0 86.5
Wednesday 720 | 870 | 909 | 915 | 914 | 90.1 | 90.6 | 86.5 | 85.6 | 863 | 84.3 | 85.6 86.9
Thursday 710 | 843 | 88.6 | 91.7 | 90.1 | 90.6 | 903 | 88.1 | 86.4 | 87.2 | 84.8 | 86.8 86.7
Friday 722 | 860 | 89.8 | 909 | 89.6 | 90.1 | 90.6 | 87.9 | 87.1 | 87.0 | 84.5 | 854 86.7
Saturday 633 | 748 | 797 | 838 | 864 | 84.6 | 852 | 84.9 | 83.6 | 85.7 | 86.5 | 83.0 381.8

| Hourly Consistency | 69.4 | 82.7 [ 87.2 | 89.7 | 90.0

[88.3 | 885 | 862 |

84.7 | 85.8 | 84.1 | 843 | |

C. Assessing Homogeneity in GMM Components

One of the aims of the GMM approach is to identify
groups of block-faces that are spatially close and have
similar demand. To gauge our success in doing so, and to
justify considering the zones as groups of users with similar
preferences, we create the weight matrix by setting values
of w;; to 1 when block-faces ¢ and j are in the same GMM
component and 0 when they are not.

V. EXPERIMENTS & RESULTS

We now explore the application of our GMM approach,
provide analysis of the spatio-temporal characteristics and
consistency of parking demand, and demonstrate the advan-
tages of our approach by considering spatial autocorrelation.

A. Modeling Belltown with GMM

In Fig. 2, we illustrate the mean spatial demand in Bell-
town at Friday 7PM and Saturday 10AM. Figs. 4a and 4b
provide an example use of our GMM approach with the same
data. It is clear that we are able to find separable zones in
which spatially close block-faces are included in the same
mixture components. This is important due to the fact that
while there may be spatial heterogeneity in Belltown, we are
able to find zones in which block-faces have similar demand
thereby validating that zone based pricing is viable.

Indeed, we find that within Belltown there is local ho-
mogeneity which enables our GMM approach. Using the
method described in the previous section to determine the
spatial homogeneity locally, we find that the spatial au-
tocorrelation is significant 91.9%, 96.67%, and, 98.2% of

the time using 3, 5, and 10 nearest neighbors, respectively.
Leveraging this, we are able to fit a GMM where the spatial
autocorrelation is significant 99.9% of the time in our dataset.
This is a major improvement over the current paid areas as
they only have significant autocorrelation in 66.4% of the
instances.

The example depicted in Figs. 4a and 4b also indicates
that the model we learn is related to the day of the week and
time of day. The model we learn for Friday night, e.g., is
very different from the model we learn for Saturday morning,
asserting that the spatial component of demand depends on
the temporal component. Consequently, in the design of
pricing policies and information schemes, the questions of
where and when to designate them should be considered
together.

An interesting artifact in our analysis of Belltown is
the model selection problem. Using the model selection
criterion described in Section III-A, we find four mixture
components—corresponding to four paid parking zones—to
be optimal. At present, Belltown has just two paid parking
zones in place. This may play a significant factor in why we
can improve on the existing policy design method of using
heuristics to set paid zone boundaries.

B. Consistency of Parking Demand

The results in Table I establish that parking demand is
typically consistent through time. With the exception of
the first hour of paid parking in a day when occupancy is
very low as drivers arrive, the average consistency value
at an hour of a day is very high ranging from 82.7%-—



90.0%. Furthermore, on a given day of the week, even when
including the less consistent first hour of the day, the average
consistency value is still very high ranging from 81.8%-—
86.9%.

We also investigate how the spatial centers of the mixture
components change from week to week. We do this for a
day of the week and hour of the day by using the k-means
clustering algorithm [20] on the centers of components that
were found at each date with the same corresponding day of
the week and hour of the day. Fig. 4c shows an example
of clustering the centers from 29 GMM fits on different
Wednesdays at 10AM. By finding the centroids of each of the
k-means clusters and calculating the average distance from
each centroid to the points in that respective cluster, we can
describe this change in terms of distance. In Fig. 4c, we find
the average distance of the points to their respective centroids
to be just 29m. The corresponding value at all other days of
week and hours of the day has mean of 69.3m. Thus we can
see the spatial centers are reliable in our model across time
to within just a few street blocks.

C. Spatio-Temporal Insights

A key insight we gain from the GMM approach is learning
more about the time periods in which spatial demand is
similar. We find that Monday—Friday from 8 AM—4PM nearly
identical models are learned. Likewise, for Monday—Friday
from 4PM—8PM very similar models are learned, which are
different from those learned Monday-Friday from S8AM-
4PM. Contrarily, models we learn for Saturday are quite
unique and need to be considered on their own?.

The preceding observations indicate that, based off of our
model, it would make the most sense to have two weekday
pricing periods—i.e. 8AM—4PM and 4PM-8PM—for the
zones we commonly find at these respective time periods,
and a unique Saturday pricing scheme. These results are
compelling because they are quite different than the policies
in place now. Currently, the pricing periods in Belltown
are from SAM-11AM and 11AM-8PM with no individual
consideration given to Saturdays.

VI. DISCUSSION & FUTURE WORK

We provide an in depth analysis of the spatio-temporal
characteristics of parking demand using real data, as well
as an interpretable way to find zones where there is spatial
homogeneity using a GMM. The work has the potential to
allow for more informed decision-making in both policy
decisions and in designing targeted information and incentive
schemes. We establish that parking demand is consistent,
which is to say that without changes to management or
infrastructure, learned models will hold up over time. While
we focus on Seattle, our methods leverage a now common
data source of paid parking transactions from cities, making

3We make an animation available showing the  model
learned at each day of the week and hour of the day at
github.com/fiezt/spatial-data-analysis/blob/master
/animation/mixture.mp4.

the models and analysis we use flexible enough to be applied
in many other communities.

We seek to use this work to identify zones of similar
demand in support of designing targeted information and
incentive schemes. Towards this end, we are investigating a
multi-arm bandit framework to learn user responses while
matching information and incentives in GMM identified
zones. We plan to implement developed strategies in a living
lab setting in Seattle neighborhoods with the aid of SDOT.

REFERENCES

[1] D. Shoup and H. Campbell, “Gone parkin’,” The New York Times,
vol. 29, 2007.

[2] C.Dowling, T. Fiez, L. Ratliff, and B. Zhang, “How much urban traffic

is searching for parking?” arXiv preprint arXiv:1702.06156, 2017.

INRIX. (2017) Searching for parking costs americans $73 billion

a year. [Online]. Available: http://inrix.com/press-releases/parking-

pain-us/

[4] J. 1. Levy, J. J. Buonocore, and K. Von Stackelberg, “Evaluation of the
public health impacts of traffic congestion: a health risk assessment,”
Environmental health, vol. 9, no. 1, p. 65, 2010.

[5] K. Zhang and S. Batterman, “Air pollution and health risks due to

vehicle traffic,” Science of the total Environment, vol. 450, pp. 307—

316, 2013.

Z. Qian and R. Rajagopal, “Optimal dynamic pricing for morning com-

mute parking with occupancy information,” Transportation Research

Part B, 2012.

[71 G. Pierce and D. Shoup, “Getting the prices right: an evaluation of
pricing parking by demand in san francisco,” J. American Planning
Association, vol. 79, no. 1, pp. 67-81, 2013.

[8] O. Zoeter, C. Dance, S. Clinchant, and J.-M. Andreoli, “New algo-
rithms for parking demand management and a city-scale deployment,”
in Proc. 20th ACM SIGKDD Inter. Conf. Knowledge Discovery and
Data Mining. ACM, 2014, pp. 1819-1828.

[9] C. Dowling, T. Fiez, L. Ratliff, and B. Zhang, “Optimizing curbside
parking resources subject to congestion constraints,” in Proc. 56th
IEEE Conf. Decision and Control (arXiv:1703.07802), 2017.

[10] SFMTA. (2017) Sfpark. [Online]. Available: http://sfpark.org

[11] SDOT. (2017) Paid parking. [Online]. Available: http://www.seattle.
gov/transportation/parking/paidparkingupdates.htm

[12] LADOT. (2017) La express park. [Online].
/Iwww.laexpresspark.org

[13] DDOT. (2017) Parkdc. [Online]. Available: https://ddot.dc.gov/page/
parkdc

[14] J. Glasnapp, H. Du, C. Dance, S. Clinchant, A. Pudlin, D. Mitchell,
and O. Zoeter, “Understanding dynamic pricing for parking in los
angeles: Survey and ethnographic results,” in Inter. Conf. HCI in
Business. Springer, 2014, pp. 316-327.

[15] X. Ma, X. Sun, Y. He, and Y. Chen, “Parking choice behavior
investigation: A case study at beijing lama temple,” Procedia-Social
and Behavioral Sciences, vol. 96, pp. 2635-2642, 2013.

[16] StatisticalAtlas. (2017) Population by neighborhood in seattle. [On-
line]. Available: https://statisticalatlas.com/neighborhood/Washington/
Seattle/Belltown/Population

[17] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” J. Royal Statistical
Society. Series B (Methodological), pp. 1-38, 1977.

[18] C.J. Wu, “On the convergence properties of the em algorithm,” The
Annals of statistics, pp. 95-103, 1983.

[19] R. A. Boyles, “On the convergence of the em algorithm,” J. Royal
Statistical Society. Series B (Methodological), pp. 47-50, 1983.

[20] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[21] G. Schwarz et al., “Estimating the dimension of a model,” The annals
of statistics, vol. 6, no. 2, pp. 461-464, 1978.

[22] P. A. Moran, “Notes on continuous stochastic phenomena,”
Biometrika, vol. 37, no. 1/2, pp. 17-23, 1950.

[3

=

[6

=

Available: http:



